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Abstract: The paper presents a new strategy for 
parallel testing of RAM. A cellular automata (CA) 
based test pattern generator for detecting pattern 
sensitive faults (PSFs) in random access memories 
is also reported. An 8-cell one dimensional three 
neighbourhood CA has been extended to the five- 
neighbourhood case preserving the criterion of 
local connections. By changing the neighbour- 
hood relation, all the 64 patterns for detecting 
five-neighbourhood PSFs can be generated by 
loading two seeds only. The method can be easily 
extended for detecting PSFs of any neighbour- 
hood. 

1 Introduction 

Recent development and commercial fabrication of high 
density random access memory (RAM) integrated circuits 
have been greatly motivated because of the growing 
needs of RAMs in computer systems. The number of 
memory cells on an integrated circuit has quadrupled 
every two to four years, from the initial 1 Kbit RAM to 
the present 16 Mbit RAM. Owing to this increased den- 
sity, the testing of these chips have become costly as well 
as time consuming. A RAM chip mainly consists of an 
array of memory cells, an address decoder, memory 
address register (MAR), memory data register (MDR) 
and read/write logic (sense amplifiers, write drivers, etc.) 
(Fig. 1). A wide variety of physical faults can occur in any 
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Fig. 1 Organisation of u RAM chip 

of these subsystems. The test procedures for the detection 
of these faults can be classified as DC parametric testing, 
AC parametric testing, and functional testing [2]. In this 
paper, we restrict out attention to functional testing of 
the memory aray only. 
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For an n-cell memory array, the complexity of the 
functional testing of all possible faults is 2”, as every cell 
is to be checked for 0 and 1 for all possible states of 
remaining cells. Since this is practically not feasible, some 
restricted fault models are usually considered. Three fault 
models for RAMs are most widely used. These are: 

(a) The ‘stuck-at fault’ model: The logic values on 
some signal lines or in one or more memory cells are 
permanently stuck at 1 or 0. These errors can occur in 
the memory data register, memory address register, 
address decoder, the memory cell array and the read/ 
write logic. Several works have been reported on the 
detection of memory stuck-at faults, like the MSCAN 
method [2], the ATS procedure [ I  11. the modified ATS 
procedure 1141, etc. 

(b)  The ‘couplingfault’ model: A pair of memory cells i 
and j are said to be coupled if a transition from 1-to-0 or 
0-to-I in one cell (say i )  of the pair changes the state of 
the other cell (say j ) .  Various test procedures such as 
column bars, marching Is and Os and galloping 1s and Os 
(GALPAT) have been proposed [2]. These algorithms 
have complexities ranging from O(n) to O(n2) depending 
on the fault coverage. Later, more efficient test pro- 
cedures having complexity O(n) with more comprehensive 
fault coverage have been reported [21,24]. 

( c )  The ‘pattern sensitivefault’ ( P S F )  model: This cate- 
gory of faults refer to the case that a memory cell do not 
function properly whenever a particular pattern is stored 
in other cells, or whenever another memory cell changes 
state. 
General PSFs are intractable in practice 181. However, 
some restricted (and also realistic) PSF models allow for 
the generation of efficient test sequences [9, 231. Even 
though these algorithms have linear complexity, they 
have an O(k2*) constant multiplier, where k is the neigh- 
bourhood size. Subsequent works have been reported 
which improve upon this complexity by using parallel 
testing strategies [l2, 131. 

Here, in this paper, the key ideas of parallel testing 
strategies are further extended and a new scheme of cellu- 
lar automata (CA) based built-in self-test design of RAM 
is proposed. Since a test set for detecting PSFs 
automatically detects stuck-at and coupling faults, so we 
concentrate on the detection of PSFs only. The key con- 
cepts introduced in the present work are 

(i)  A new CA-based test pattern generator covering all 
PSFs is introduced. 

(ii) A simple hardware is proposed at the output of the 
test pattern generator in order to reduce the number of 
test patterns to be written on RAM cells. 

(iii) Cells on multiple numbers of rows are accessed 
simultaneously by using a simple current sharing circuit 
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in conjunction with some additional control for test 
mode. 

This method has been found to be more efficient and 
elegant with respect to modularity and cascadibility. 
Moreover, the time complexity is comparable with exist- 
ing methods. 

2 CA preliminaries 

Traditionally, cellular automata (CA) have been widely 
used as a method of modelling selforganising systems 
like biological self-reproduction, fully discrete dynamic 
systems etc. [4]. Recent renewed interests in C A  have 
developed mainly due to its simple computation theory 
and attractive parallel processing capabilities. 

In Reference 26 the state transition behaviour of a 
wide variety of CAS has been studied, and the CAS have 
been classified into four broad groups: 

Class 1 :  CAS which evolve to a homogeneous final 
global state. 

Class 2: CAS in which each state lie in some cycle 
(periodic behaviour). 

Class 3 :  CAS exhibiting chaotic or pseudo-random 
behaviour. 

Class 4 :  CAS having complicated localised and propa- 
gating structures. 

A CA basically consists of a discrete lattice of sites (cells) 
which can assume values 0 or 1. The cells evolve in dis- 
crete time steps according to some deterministic rule that 
depends only on local neighbourhood. Each cell consists 
of a storage element (flip-flop) and a combinational logic 
realising the next state function, as shown in Fig. 2. 

from right 
neighbour 

Fig. 2 A typical CA cell 

Consider an 1-D CA where all the cells are arranged 
in a linear array. From the viewpoint of ease of imple- 
mentation, the next state of a particular cell is assumed to 
depend on itself and on its two neighbours (3-N 
dependency). 

Mathematically, the state xi of the ith cell of a 1-D 
3-N C A  at time t + 1 is given by 

xi" =f(xl, x f + J  

where xf denotes the state of ith cell at time t, a n d f i s  
called the rule of the automata. f is a boolean function of 
three variables, so there are 256 possible rules. 

Example 1 :  Consider a 3-neighbourhood CA with the 
next-state function for cell i represented as 

Neighbourhood state: 1 I 1  110 101 100 011 010 001 OOO 
Next state: 1 0 0 1 1 0 0 1  

On the top row all 8 possible values of neighbourhood 
are given, and below each is given the value achieved by 
the central cell on the next time step according to the 
rule. The bottom row taken as a binary number and con- 
verted into its decimal equivalent, is the rule, 153. 
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Alternatively, the next-state transition function (rule) 
of a 1-D CA cell can be expressed algebraically. In this 
notation, xo,  xI and x respectively, denote the state of 
a particular cell, and those of its right and left neigh- 
bours, Then the next state of the cell can be expressed as 
a Boolean functionf: .;+ =f(xb, x'- *, xi) 

Definition 1:  If the next state functionfis an EXOR func- 
tion, then the rule is said to be linear. 

Definition 2: If all the cells obey the same rule, then the 
CA is said to be uniform; otherwise it is hybrid. 

Definition 3 :  If the end cells of the CA are connected to 
constant logic 0, then the CA is said to have 'null bound- 
ary', but if the leftmost and rightmost end cells are con- 
nected in a loop then it is 'periodic boundary'. 

Efficient characterisation of 1-D CA based on matrix 
algebra has been proposed in Reference 6,  where the 
global state of the CA is generated by a linear operator. 
For an n-cell 1-D C A  the linear operator is an n x n 
binary matrix whose ith row corresponds to the neigh- 
bourhood relation of cell i, and the operation is a simple 
modulo 2 matrix multiplication. The operator is termed 
as the characteristic matrix of the CA, and is denoted by 
T .  

If f,(x) represents the state of the automata at time t, 
then the next state, i.e. the state at time (t + 1) is 

f, + 1(.) = x f , (x)  

f ,+&x) = T P  x m 
In general, 

Example 2: The four cell hybrid null boundary 1-D C A  
with the rule (90, 150, 150,90) is shown in Fig. 3. 

__ 
clock 

Fig. 3 

Here, 

T =  

A one-dimensional C A  

0 1 1 1  1: 0 0 1 0  :l 
If the present state of the CA isf,(x) = [I 0 1 01' then 
the next state is 

f, + ,(XI = x f,(4 
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In this paper, the concepts developed in Reference 6 for 
the 3-N case have been generalised to the extended neigh- 
bourhood case. The dynamic behaviour of such an 
extended neighbourhood CA has been investigated to 
generate a particular class of unit distance code, which 
has been applied to detect pattern sensitive faults (PSF) in 
random-access memories (RAM). 

3 Characterisation of extended neighbourhood 

3.1 Extended neighbourhood 
One of the limitations of a 1-D CA employing a 3-N 
function is its relatively limited computational ability. If 
the number of neighbourhood cells on which the next 
state of a cell can depend is increased, the number of pos- 
sible rules or functions realisable by the CA also are 
enhanced. 

Suppose that we want to increase the neighbourhood 
size of a given 1-D CA. One way of achieving this is to 
reorganise the cells of the CA in a two-dimensional plane 
in such a way that the neighbourhood set of a particular 
cell is a superset of that of the corresponding cell in the 
original CA, although still preserving the local neigh- 
bourhood property. An efficient way to get the extra 
neighbours is to arrange (pleat) the 1-D array in the form 
of a spiral so that the CA becomes narrower in the linear 
direction and correspondingly gain in thickness. This is 
illustrated below with the help of an example. 

Example 3:  Consider a 1-D CA comprising of 9 cells as 
shown in Fig. 4a, where each cell excepting the boundary 
cells has 3-neighbourhood functions. Fig. 4b depicts 
another CA with an extended neighbourhood function. 

CA having dynamic behaviour 

a 

b E 
G H  

C 

Fig. 4 
(I Original 3-neighbourhood CA 
b Extended neighbourhood CA 
c Physical cell layout to implement h 

A one-dimensional CA comprising 9 cells 

We redraw this configuration as one in which the 
same cells are arranged into two bit planes (Fig. 4c). In 
this configuration, the neighbourhood of the cell E (here 
five, as compared to three earlier) are no more than one 
cell distance away from E, even though some are in the 
other bit plane. 

3.2 Dynamic behaviour of characteristic matrix 
The characteristic matrix T mainly contains two sets of 
functional information: (i) the neighbourhood depend- 
ence function, and (ii) the state transition function. 
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These functions are constant for a particular CA. So a 
CA can be characterised by a unique characteristic 
matrix T .  Now, if one of the above two functions changes 
with time then the characteristic matrix will also change 
dynamically. By changing the neighbourhood relation of 
one or more cells the T matrix can be modified easily. A 
CA is said to have dynamic behaviour if it can be config- 
ured to have different T matrices at different instants of 
time. 

3.2.1 Group properties of dynamic CA: If a CA under 
the transformation of the operation with T forms a cycle 
of length n, then 

[f1+.(x)l  = CTI"Cf,(x)l = C f t ( X ) l  

That is, 

[TI" = 1 

or, 
det [TI = 1. 

A CA with such a property is called a group CA.  Some 
results related to group CA have been proved in Refer- 
ence 6 which are stated below without any proof. 

(a )  A CA is a group CA if det [TI = 1 .  
(b)  A group CA has cycle lengths of p (or factors of p)  

with a nonzero starting state if and only if 
det [ T P  + 13 = 0. 
We now consider a CA whose characteristic matrix T 
changes dynamically with time. Suppose that the CA 
alternately uses rule given by a characteristic matrix TI 
for some cycles of time, and that by matrix T2 for other 
cycles of time. If both TI and T2 obey the characteristics 
of group CA, then we can write, 

T ;  = I  and T ' ; = I  

for some m and n 

Dejinition 4 :  If T,  and denote the characteristic 
matrices of a CA having dynamic behaviour, then the 
'composite matrix' is defined as T y  = TfTT, where x and 
y are some integers. 

Lemma I :  If n and m, respectively, denote the lengths of 
two group CAS whose characteristic matrices are TI and 
T2,  then their composition T:; will also constitute a 
group CA, provided either (i) a = n, b = 1, or (ii) a = 1, 
b = m. 

Proof: Consider the case a = n and b = 1. From the 
group properties of CA, it follows that 

T; = I  and T ' ; = I  

I f f ( x )  denote the present state of the CA, then 

T ; f ( x )  = f ( x )  

T ' ; T ; f ( x )  = f ( x )  

or 

or 

TT- 1 ( T 2 ( T ; f ( x ) ) )  = f b )  
or 

T';- ' ( T T A T f ( x 1 ) )  = f ( x )  

TZ T ;  TZ T ; f ( x )  = f ( x )  

or 
T m - 2  

2 
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or 

(TzT;)(TzT;) . . .  t o m  terms = f ( x )  

So the CA under the operation of dynamic T forms a 
cycle of length (n + I)m, i.e. it constitutes a group CA of 
length ( n  + 1)m. Now all the subcycles of length ( n  + 1) 
can be made distinct if we choose Tz in such a way that 
the in + 1)th state of each subcycle are distinct from the 
previous n states. Similarly, the proof for the condition 
a = 1, h = m can be arrived at. Q.E.D. 

4 

As discussed in Section 1, we shall restrict our attention 
to the detection of PSFs in RAM. Two commonly used 
restricted PSFs, shown in Fig. 5, are: 

Type  I :  5-cell neighbourhood, i.e. every cell depends on 
itself and its four neighbours (top, bottom, left and right). 

Detection of PSFs in R A M  

0 

a 

G 

b 

Fig. 5 Neighbourhood dependencies 
a Type I 5-neighbourhood, E-base cell, ( A B C D )  - neighbourhood 
h Type 2.9-neighbaurhood, E-base cell, ( A B C D F G H I )  ~ neighbourhood 

Type  2: 9-cell neighbourhood, i.e. every cell depends on 
itself and its eight neighbours (top, bottom, left, right and 
the four diagonals). 

In the present work we concentrate on the Type 1 cate- 
gory of faults. 

There are two classes of PSFs caused by transition 
write operations affecting the base cell of a given neigh- 
bourhood. These are: 

0 Active neighbourhood P S F  ( A N P S F ) :  The base cell 
changes with a transition write in one of its neighbours 
when the other neighbours contain a certain pattern of 0 
and I .  

0 Passive neighbourhood PSF ( P N P S F ) :  The contents 
of a cell cannot be changed from 0 to 1 (or 1 to 0) when a 
certain pattern exists in the neighbouring cells. 

Two steps have to be executed to test the base cells for 
ANPSFs and PNPSFs: 

Step 1 :  Sensitise every fault using the appropriate 
neighbourhood pattern. 

Step 2: Read the state of the base cell after each sensi- 
tising pattern to detect any fault. 

The number of patterns needed to sensitise all ANPSFs 
of a neighbourhood of size k is ( k  - 1)2k because each 
one of the ( k  - 1) neighbours of the base cell must exer- 
cise both the I-to-0 and 0-to-I transitions, while the 
other ( k  - 1) cells take all the possible binary values. 
Table 1 gives the sequence of patterns needed to sensitise 
all ANPSFs of size five. It can be observed that the test 
patterns form a unit distance code where two successive 
test vectors differ only in one bit position. 

Many different procedures have been proposed [ 12, 
131 for the efficient generation of the sensitising patterns. 
In the next section we present a CA based structure to 
generate the sensitising patterns in proper sequence. 
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Table 1 : Test vector sequence t o  detect PSFs 

0 0 0 0  0 0 0 0  1 0 1  0 1 0 1  0 
0 0 0 1  0 1 0 0  1 0 1 1  1 1 1 0  
0 0 1 1  1 1 0 0  1 0 0 1  0 1 1 0  
0 1 1 1  1 1 0 1  1 1 0 1  0 1 1 1  
1 1 1 1  1 1 1 1  0 1 0 1  0 1 0 1  
1 1  1 0  1 0 1  1 0 1  0 0  0 0 0 1  
1 1 0 0  0 0 1 1  0 1 1 0  1 0 0 1  
1 0 0 0  0 0 1  0 0 0 1  0 1 0 0 0  
0 0 0 0  0 0 0 0  1 0 1  0 1 0 1  0 
0 0 1  0 1 0 0 0  1 0 0 0  0 0 1  0 
0 1 1 0  1 0 0 1  1 1 0 0  0 0 1 1  
1 1 1 0  1 0 1 1  0 1 0 0  0 0 0 1  
1 1 1 1  1 1 1 1  0 1 0 1  0 1 0 1  
1 1 0 1  0 1 1 1  0 1 1 1  1 1 0 1  
1 0 0 1  0 1 1 0  0 0 1 1  1 1 0 0  
0 0 0 1  0 1 0 0  1 0 1 1  1 1 1 0  

5 Test pattern generation using dynamic CA 

We now present a method to generate the code sequence 
depicted in Table 1 using an 8-cell CA as shown in Fig. 
6a. To make the neighbourhood localised, the cells are 
arranged in a two dimensional plane as depicted in Fig. 
6h. Additionally, to achieve dynamic behaviour 
(discussed later) the two rows are driven by distinct clock 
signals and d 2 .  

In this arrangement, the top row follows rule 170 with 
periodic boundary condition. Only one cell of the top 
row contains a 1 at any particular instant. This row 
basically contains the information regarding which bit 
position is changed in two successive patterns being gen- 
erated. In effect, the top row is simply a cyclic left shift 
register. 

The lower bit plane is driven by the outputs of the top 
row cells. A particular cell in the bottom row changes 
state when the corresponding neighbouring cell of the top 
row contains 1. The rule followed by the bottom row can 
be expressed algebraically as xo 0 x - ~ ,  with respect to 
Fig. 6a. 

Thus the Characteristic matrix of the 8-cell CA is given 
by 

It can be shown that T:  = I ,  which implies that this CA 
is a group CA of length 8. 

We now consider another characteristic matrix T2 in 
which cells of the bottom row do  not depend on the cells 
of the top row; they depend only on themselves. The cor- 
responding characteristic matrix is 

Tz = 
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It can be shown that T: = I ,  i.e. it is a group C A  of 
length 4. 

Here, the CA is made to change dynamically with time 
by changing its characteristic matrix. We choose the 
composite characteristic matrix as TYT,, so that the C A  

cycles of length 36 generated by the 8-cell C A  are shown 
in Table 2, where the test pattern ( a , ,  a 2 ,  a,,  a,) is 
taken out from the bottom row of the CA. From the 
table i t  is clear that the process of enabling d 2  for 8 
cycles and disabling it for one cycle can be achieved by 

a 

Fig. 6 An 8-cell CA 
D I-D organisation to generale the test vectors 
b 2-D organisation a f b  with two clack signals 

j:l 
is run for 4 subcycles, where in each subcycle the charac- 
teristic matrix is TI for 8 time steps and T2 for 1 time 
step. So, according to Lemma I ,  the C A  forms a group 
CA of length (8 + 1)4 = 36. If two consecutive test 
vectors are identical then one of them is a dummy vector 
as it has no effect in testing. In that case, the similar test 
vectors are treated as one, applied for two time steps. 

In our method, one part T' or T2 is an identity matrix, 
which operates on the bottom row only. Although, the 
application of Tz changes the global state of the CA, the 
bottom row do not change. It follows that the start of 
each subcycle produces a dummy state vector. Therefore, 
in the four subcycles there are four dummy state vectors. 
So effectively, we get (36 - 4) = 32 test vectors. 

As discussed above, the C A  generates 32 patterns in a 
single cycle. If the cycle is run with a new initial state 
then another set of 32 test patterns can be generated. By 
selecting suitable starting seed, the required 64 patterns 
(indicated in Table 1) can be generated. The control 
structure to achieve this is discussed next. 

5.1 CA structure realising the dynamic behaviour 
We now outline the design of a C A  whose behaviour is 
represented by the composite characteristic matrix T 
given by T : T 2 .  The top and bottom rows of the CA are 
fed with distinct clock signals 4, and 42.  However, the 
clock signal feeding the lower row is gated, which makes 
it possible to freeze the state of the lower row by dis- 
abling the clock d 2 .  Disabling 42 effectively changes the 
characteristic matrix of the C A  from T, to T 2 .  The two 
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making x = 0 whenever the state of the top row is equal 
to its initial load value. The hardware circuitry of Fig. 7a 
is specifically meant to perform this control. 

initial 
loading I I 

1 

comparator 

(=0 if match) bottom row 

(72 e load 

b 

Fig. 7 
il Realisation of dynamic T 
h Loading of a new seed 

Generurkin ofunir distance code 

Moreover, for the loading of the next seed, we see from 
the table that the end of the first cycle of length 
(8 + 1)4 = 36 can be detected by observing the pattern 
( a , ,  a,, a,, a,) = (0  1 0 0) at the end of a TI subcycle 
of length 8. The circuit to generate this load signal is 
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Table 2: Test patterns generated by CA 

Initial loading 0 0 0 1 0 0 0 0 

a3 a2 a ,  a0 a3 a2 a ,  a, a3  a2 a,  

0 0 0 1  0 0 0 0  0 0 0 1  1 1  1 0  0 0 0 1  0 0  1 
0 0 1 0 0 0 0 1  0 0 1 0 1 1 1 1  0 0 1 0 0 0 1  
0 1 0 0 0 0 1 1  0 1 0 0 1 1 0 1  0 1 0 0 0 0 0  
1 0 0 0  0 1 1  1 1 0 0 0  1 0  0 1 1 0 0 0  0 0 0 
0 0 0 1  1 1  1 1  0 0 0 1  0 0  0 1 0 0 0 1  1 0 0  
0 0 1 0 1 1 1 0  0 0 1 0 0 0 0 0  0 0 1 0 1 0 0  
0 1 0 0  1 1 0  0 0 1  0 0  0 0 0 0 0 1  0 0  1 0  1 
1 0 0 0  1 0  0 0 1 0 0 0  0 1 0  0 1 0 0 0  1 1 1 
0 0 0 1  0 0 0 0  0 0 0 1  1 1  0 0  0 0 0 1  0 1 1  
0 0 1  0 0 0 0 0 0 0 1  0 1 1 0 1 0 0 1  0 0 1 1 
0 1 0 0  0 0 1 0  0 1 0 0  1 1  1 1  0 1 0 0  0 1 0  
1 0 0 0  0 1 1 0  1 0 0 0  1 0  1 1 1 0 0 0  0 0 0 

Initial loading 0 0 0 1 1 0 1 0 

a3 a2 a ,  a, a3 a2 a ,  a0 a3 a2 a ,  

0 0 0 1  1 0  1 0  0 0 0 1  0 1 0  0 0 0 0 1  1 0  0 
0 0 1  0 1 0 1 1 0 0 1  0 0 1 0 1 0 0 1  0 1 0 0 
0 1 0 0  1 0  0 1 0 1 0 0  0 1 1  1 0 1 0 0  1 0  1 
1 0 0 0  1 1  0 1 1 0 0 0  0 0 1 1  1 0 0 0  1 0  1 
0 0 0 1  0 1  0 1  0 0 0 1  1 0 1  1 0 0 0 1  0 0  1 
0 0 1 0  0 1 0 0 0 0 1  0 1 0  1 0 0 0 1  0 0 0 1 
0 1 0 0  0 1  1 0  0 1 0 0  1 0 1  0 0 1 0 0  0 0 0  
1 0 0 0  0 0 1 0  1 0 0 0  1 1  1 0  1 0 0 0  0 1 0  
0 0 0 1  1 0  1 0  0 0 0 1  0 1 1  0 0 0 0 1  1 1  0 
0 0 1 0  1 0  1 0  0 0 1 0  0 1 1  1 0 0 1 0  1 1  0 
0 1 0 0 1 0 0 0  0 1 0 0 0 1 0 1  0 1 0 0 1 1 1  
1 0 0 0  1 1  0 0 1 0 0 0  0 0 0 1 1 0 0 0  1 0  1 

shown in Fig. 7b.  It may be noted that the load signal will 
be active only at the end of the cycle of length 36. 

6 Application of test patterns 

There exists a number of tiling strategies for a 5- 
neighbourhood memory array. Our main aim is to 
choose a particular strategy such that greater parallelism 
is possible at the time of test application. One such tiling 
of an (8 x 8) memory array is shown in Fig. 8. E is the 
base cell and A, E ,  C, D are its four neighbours. Many 
base cells with identical neighbourhood can be accessed 
simultaneously so that the test application time gets 
reduced drastically. 

Fig. 8 A filing strategy 

6.1 Parallel testing strategy 
There is ample scope for parallelism in memory testing 
since by modifying the row and column decoders, a 
number of rows and columns can be selected at the same 
time. Accordingly, disjoint neighbourhood patterns may 
be applied and observed concurrently. A method of par- 
titioning the memory array into a number of blocks and 
then testing each memory block parallely is considered 
here. 

From simulation results it has been found Reference 
12 that when more than one cell is selected by accessing 

multiple columns on a single row, the memory operates 
correctly, i.e. the multiple cell access is similar to single 
cell access. However, if multiple rows are accessed the 
speed of write operation is degraded too much. For read 
operation the situation is complex; if all the accessed cells 
contain the same value then the read is correct, but if 
they differ, the contents of some of the cells change [12]. 

One solution to the problem of write time degradation 
is to use a larger driver with higher current driving capa- 
bility, so that it may be able to drive many cells at a time. 
However, as the driver size is increased, it consumes 
more power and space. Also, this will add additional 
delay in normal mode. 

6.1.1 Solution to the problem of multiple row selec- 
tion: To circumvent this problem we introduce an altern- 
ative method 131 to increase the driving capability. We 
assume that the total memory array (Jn  x Jn)  is parti- 
tioned into nip number of (pJn)  memory array blocks, 
where p is the number of rows in a block. Row i 
(1 < i < p )  of each block can be accessed simultaneously 
in the test mode. Here, we assume a four partitioned 
memory array, i.e. nip = 4. As stated earlier, our tiling 
strategy is such that every fourth column is identical. 
Hence the number of columns are partitioned into 
groups of four (Fig. 9). 

The decoder circuit of Fig. 9 selects alternate fourth 
columns and the transistor circuits enclosed within the 
dotted box is used one per group. The bit lines of the 
memory array are connected to the senseidrive amplifiers 
through transistor switches T1, T2, T3,  T4. The pass 
transistors PI, P2, P 3  are inserted to facilitate mutual 
current sharing. In the test mode the pass transistors are 
turned on. That is, in test mode when any one of the four 
bit lines are selected, the other three drivers which are 
quiescent normally, now boosts the current through the 
selected bit line. In normal mode the select line is 0, i.e. 
the pass transistors are off and simply one out of four 
column is selected by the modified decoder. 
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6.1.2 Reduction of memory write operations: The test 
set which we are using to test for PSFs in memory have 
the unique property that successive test vectors differ 
only in one bit position. Therefore, if we can detect the 

exists for Cs and Ds. Now, if A and B differ (or C and D 
differ) then it takes 2p steps to write all As and Bs (or Cs 
and Ds). Table 3 shows the number of write operations 
required in our scheme. The last column of the table 
denotes the number of operations that would be neces- 
sary otherwise. p denotes the number of rows in a parti- 
tion. 

Table 3 :  Number of write ooerations 

Pattern Number of bit writes 

A B C D As perthe proposed scheme Normal 

0 0 0 0  P 2P 
0 0 0 1  3PP 2P 
0 0 1 1  P 2P 
0 0 1 0  3PI2 2P 
0 1 1 0  2P 2P 
0 1  1 1  *I2 2P 
0 1 0 1  2P 2P 
0 1 0 0  3PI2 2P 

a1 bl c1 d l  a2 b2 C2d2 0 3  b3 c3 d3 

modified decoder circuit 

Fig. 9 Parallel memory tesing scheme 

bit which changes state between successive test vectors, it 
is sufficient to write only the changed bit. The inherent 
assumption is that the memory is static and retains its 
stored information until modified further. To detect the 
changing bits, we can use the circuit as shown in Fig. 10, 
which compares the present test pattern with the pre- 
vious one and detects the bit which has changed. 

c'Tk 
changed bit 
pattern 

pattern latch 

Fig. 10 Detection of (he changed bit 

As an example, let us consider a set of test patterns S,, 
S, , . . . , S ,  that are to be applied in sequence. Assume 
SI = (0 0 0 0) and S, = (0 0 0 1). Referring to Fig. 8, the 
test set is applied to the cells ( A  B C D), the neighbours 
of the base cell E .  During application of the second 
pattern S, , the comparator-decoder circuit compares S ,  
and S ,  and decodes that bit which has changed, namely 
the bit corresponding to cell D. So to apply the second 
test pattern S, , we write only the cell marked D instead 
of the four bits ( A  B C D) .  Obviously for m number of 
test patterns, the total number of writes is m instead of 
4m. So, in case of ANPSF, the total number of writes 
decreases from (4 x 256) to 256, and for PNPSF from 
(4  x 64) to 64. 

For dynamic R A M ,  all the four bits ( A  B C D) of every 
test set has to be written into the neighbourhood cells 
during testing. It is evident from Fig. 8 that our tiling is 
such that the test bits A and B are in the same row, while 
C and D are in same other row. 

From the previous discussion it is evident that multi- 
ple cells in the same row (i.e. multiple columns) can be 
accessed without any problem. So, in a test pattern if A 
and B are equal, then only p steps are required instead of 
2p steps to write up all the As and Bs. A similar case 
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Hence for dynamic RAM two 2-bit comparators are 
used to compare A and E,  and C and D. If the compara- 
tor checks that A = B (or C = D) then the alternate 
columns are selected in a single row and are written in 
two steps rather than four steps as discussed in the above 
table. If ( A  # E )  or (C # D) then they have to be written 
separately. 

Using the comparator circuit for ANPSF the write 
time decreases from (256 x 2 p )  to (96 x 2p), and for 
PNPSF it decreases from (64 x 2p) to (24 x 2p). 

6 2  The testing algorithms 
Algorithm I :  Test for ANPSF 

Step I : Write 0 into all base cells. 
Step 2 :  Repeat 64 times 

cells. 

Step 3 :  Write 1 into base cells. 
Step 4 :  Repeat step 2. 
Step 5 :  Interchange the role of base cells and A B C D 

(a )  Write the current generated pattern into the 

(b)  Read in parallel all the base cells. 

cells and repeat steps 1, 2, 3 , 4 .  

Time complexity for Algorithm I :  
(i) Writing all base cell - 4p. 

(ii) Writing all 128 test patterns - 130p. 
(iii) Read all base cells - 256p. 

Algorithm 2: Test for PNPSF 
Step I :  Write 0 into all base cells. 
Step 2: Repeat 16 times 

(a)  Write current test pattern in the neighbourhood. 
(b)  Read all base cells in parallel. 

Step 3 :  Write 1 into all base cells. 
Step 4 :  Repeat step 2. 
Step 5 :  Interchange the role of base cells and the 

neighbourhood and repeat steps 1, 2, 3 , 4 .  

Time complexity for Algorithm 2 :  
(i) Writing all base cells ~ 4p. 

(ii) Writing all 32 test paterns - 34p. 
(iii) Reading all base cells - 64p. 

7 Conclusion 

A new strategy for parallel testing of RAM using a CA 
based test generation scheme has been reported. The 
advantage of the scheme is that it requires very simple 
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hardware to generate the test. patterns, and can be 
extended to PSFs of any neighbourhood size. Thus, if we 
want to generate n-bit code words with the same pro- 
perty as discussed, then 2n number of CA cells are 
required (organized in 2 x n array). The number of code 
sequences to be generated is n x 2”. In that case, one 
loading produces (n x 2n) or 2nZ number of test vectors. 
So the number of loadings required is [q 
For instance, test patterns for 9-neighbourhood PSFs 
(n = 9) can be generated by a 16-bit CA with a similar 
structure as discussed. 

Several works have been reported [ l ,  5, 61 in the 
application of CA for a variety of test generation prob- 
lems. Specifically, CA structures have been proposed 
which are capable of generating pseudo-random, pseudo- 
exhaustive, deterministic test patterns etc. The guiding 
motivation for the present work is to employ the same 
CA structure with dynamic T operator so that it can 
provide the BIST structure for memory testing. Work is 
being carried on to extend the capabilities of the dynamic 
CA to test the other memory subsystems and other types 
of memory array faults. 
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