
Cellular automata based pattern generator for
testing RAM

D. Roy Chowdhury
I. Sen Gupta
P. Pal Chaudhuri

Indexing terms Cellular aufomato, Charocreristic matrrr. Pattern sensitive faults, R A M tesfing

Abstract: The paper presents a new strategy for
parallel testing of RAM. A cellular automata (CA)
based test pattern generator for detecting pattern
sensitive faults (PSFs) in random access memories
is also reported. An 8-cell one dimensional three
neighbourhood CA has been extended to the five-
neighbourhood case preserving the criterion of
local connections. By changing the neighbour-
hood relation, all the 64 patterns for detecting
five-neighbourhood PSFs can be generated by
loading two seeds only. The method can be easily
extended for detecting PSFs of any neighbour-
hood.

1 Introduction

Recent development and commercial fabrication of high
density random access memory (RAM) integrated circuits
have been greatly motivated because of the growing
needs of RAMs in computer systems. The number of
memory cells on an integrated circuit has quadrupled
every two to four years, from the initial 1 Kbit RAM to
the present 16 Mbit RAM. Owing to this increased den-
sity, the testing of these chips have become costly as well
as time consuming. A RAM chip mainly consists of an
array of memory cells, an address decoder, memory
address register (MAR), memory data register (MDR)
and read/write logic (sense amplifiers, write drivers, etc.)
(Fig. 1). A wide variety of physical faults can occur in any

sense amDlifiers 1 ond;rite y i ve rs I
-1

Fig. 1 Organisation of u RAM chip

of these subsystems. The test procedures for the detection
of these faults can be classified as DC parametric testing,
AC parametric testing, and functional testing [2]. In this
paper, we restrict out attention to functional testing of
the memory aray only.

Paper 8830E (C2). first received 4th September 1990 and in revised form
6th January 1992
The authors are with the Department of Computer Science & Engineer-
ing, Indian Institute of Technology, Kharagpur-721302. India

For an n-cell memory array, the complexity of the
functional testing of all possible faults is 2”, as every cell
is to be checked for 0 and 1 for all possible states of
remaining cells. Since this is practically not feasible, some
restricted fault models are usually considered. Three fault
models for RAMs are most widely used. These are:

(a) The ‘stuck-at fault’ model: The logic values on
some signal lines or in one or more memory cells are
permanently stuck at 1 or 0. These errors can occur in
the memory data register, memory address register,
address decoder, the memory cell array and the read/
write logic. Several works have been reported on the
detection of memory stuck-at faults, like the MSCAN
method [2], the ATS procedure [I 11. the modified ATS
procedure 1141, etc.

(b) The ‘couplingfault’ model: A pair of memory cells i
and j are said to be coupled if a transition from 1-to-0 or
0-to-I in one cell (say i) of the pair changes the state of
the other cell (say j) . Various test procedures such as
column bars, marching Is and Os and galloping 1s and Os
(GALPAT) have been proposed [2]. These algorithms
have complexities ranging from O(n) to O(n2) depending
on the fault coverage. Later, more efficient test pro-
cedures having complexity O(n) with more comprehensive
fault coverage have been reported [21,24].

(c) The ‘pattern sensitivefault’ (P S F) model: This cate-
gory of faults refer to the case that a memory cell do not
function properly whenever a particular pattern is stored
in other cells, or whenever another memory cell changes
state.
General PSFs are intractable in practice 181. However,
some restricted (and also realistic) PSF models allow for
the generation of efficient test sequences [9, 231. Even
though these algorithms have linear complexity, they
have an O(k2*) constant multiplier, where k is the neigh-
bourhood size. Subsequent works have been reported
which improve upon this complexity by using parallel
testing strategies [l2, 131.

Here, in this paper, the key ideas of parallel testing
strategies are further extended and a new scheme of cellu-
lar automata (CA) based built-in self-test design of RAM
is proposed. Since a test set for detecting PSFs
automatically detects stuck-at and coupling faults, so we
concentrate on the detection of PSFs only. The key con-
cepts introduced in the present work are

(i) A new CA-based test pattern generator covering all
PSFs is introduced.

(ii) A simple hardware is proposed at the output of the
test pattern generator in order to reduce the number of
test patterns to be written on RAM cells.

(iii) Cells on multiple numbers of rows are accessed
simultaneously by using a simple current sharing circuit

I E E PROCEEDINGS-E, Vol 139, N o 6, N O V E M B E R I992 469

in conjunction with some additional control for test
mode.

This method has been found to be more efficient and
elegant with respect to modularity and cascadibility.
Moreover, the time complexity is comparable with exist-
ing methods.

2 CA preliminaries

Traditionally, cellular automata (CA) have been widely
used as a method of modelling selforganising systems
like biological self-reproduction, fully discrete dynamic
systems etc. [4]. Recent renewed interests in C A have
developed mainly due to its simple computation theory
and attractive parallel processing capabilities.

In Reference 26 the state transition behaviour of a
wide variety of CAS has been studied, and the CAS have
been classified into four broad groups:

Class 1 : CAS which evolve to a homogeneous final
global state.

Class 2: CAS in which each state lie in some cycle
(periodic behaviour).

Class 3 : CAS exhibiting chaotic or pseudo-random
behaviour.

Class 4 : CAS having complicated localised and propa-
gating structures.

A CA basically consists of a discrete lattice of sites (cells)
which can assume values 0 or 1. The cells evolve in dis-
crete time steps according to some deterministic rule that
depends only on local neighbourhood. Each cell consists
of a storage element (flip-flop) and a combinational logic
realising the next state function, as shown in Fig. 2.

from right
neighbour

Fig. 2 A typical CA cell

Consider an 1-D CA where all the cells are arranged
in a linear array. From the viewpoint of ease of imple-
mentation, the next state of a particular cell is assumed to
depend on itself and on its two neighbours (3-N
dependency).

Mathematically, the state xi of the ith cell of a 1-D
3-N C A at time t + 1 is given by

xi" =f(xl, x f + J

where xf denotes the state of ith cell at time t, a n d f i s
called the rule of the automata. f is a boolean function of
three variables, so there are 256 possible rules.

Example 1 : Consider a 3-neighbourhood CA with the
next-state function for cell i represented as

Neighbourhood state: 1 I 1 110 101 100 011 010 001 OOO
Next state: 1 0 0 1 1 0 0 1

On the top row all 8 possible values of neighbourhood
are given, and below each is given the value achieved by
the central cell on the next time step according to the
rule. The bottom row taken as a binary number and con-
verted into its decimal equivalent, is the rule, 153.

470

Alternatively, the next-state transition function (rule)
of a 1-D CA cell can be expressed algebraically. In this
notation, xo, xI and x respectively, denote the state of
a particular cell, and those of its right and left neigh-
bours, Then the next state of the cell can be expressed as
a Boolean functionf: .;+ =f(xb, x'- *, xi)

Definition 1: If the next state functionfis an EXOR func-
tion, then the rule is said to be linear.

Definition 2: If all the cells obey the same rule, then the
CA is said to be uniform; otherwise it is hybrid.

Definition 3 : If the end cells of the CA are connected to
constant logic 0, then the CA is said to have 'null bound-
ary', but if the leftmost and rightmost end cells are con-
nected in a loop then it is 'periodic boundary'.

Efficient characterisation of 1-D CA based on matrix
algebra has been proposed in Reference 6, where the
global state of the CA is generated by a linear operator.
For an n-cell 1-D C A the linear operator is an n x n
binary matrix whose ith row corresponds to the neigh-
bourhood relation of cell i, and the operation is a simple
modulo 2 matrix multiplication. The operator is termed
as the characteristic matrix of the CA, and is denoted by
T .

If f,(x) represents the state of the automata at time t,
then the next state, i.e. the state at time (t + 1) is

f, + 1(.) = x f , (x)

f ,+&x) = T P x m
In general,

Example 2: The four cell hybrid null boundary 1-D C A
with the rule (90, 150, 150,90) is shown in Fig. 3.

__
clock

Fig. 3

Here,

T =

A one-dimensional C A

0 1 1 1 1: 0 0 1 0 :l
If the present state of the CA isf,(x) = [I 0 1 01' then
the next state is

f, + ,(XI = x f,(4

IEE PROCEEDINGS-E, Vol. 139, N o . 6 , NOVEMBER 1992

In this paper, the concepts developed in Reference 6 for
the 3-N case have been generalised to the extended neigh-
bourhood case. The dynamic behaviour of such an
extended neighbourhood CA has been investigated to
generate a particular class of unit distance code, which
has been applied to detect pattern sensitive faults (PSF) in
random-access memories (RAM).

3 Characterisation of extended neighbourhood

3.1 Extended neighbourhood
One of the limitations of a 1-D CA employing a 3-N
function is its relatively limited computational ability. If
the number of neighbourhood cells on which the next
state of a cell can depend is increased, the number of pos-
sible rules or functions realisable by the CA also are
enhanced.

Suppose that we want to increase the neighbourhood
size of a given 1-D CA. One way of achieving this is to
reorganise the cells of the CA in a two-dimensional plane
in such a way that the neighbourhood set of a particular
cell is a superset of that of the corresponding cell in the
original CA, although still preserving the local neigh-
bourhood property. An efficient way to get the extra
neighbours is to arrange (pleat) the 1-D array in the form
of a spiral so that the CA becomes narrower in the linear
direction and correspondingly gain in thickness. This is
illustrated below with the help of an example.

Example 3: Consider a 1-D CA comprising of 9 cells as
shown in Fig. 4a, where each cell excepting the boundary
cells has 3-neighbourhood functions. Fig. 4b depicts
another CA with an extended neighbourhood function.

CA having dynamic behaviour

a

b E
G H

C

Fig. 4
(I Original 3-neighbourhood CA
b Extended neighbourhood CA
c Physical cell layout to implement h

A one-dimensional CA comprising 9 cells

We redraw this configuration as one in which the
same cells are arranged into two bit planes (Fig. 4c). In
this configuration, the neighbourhood of the cell E (here
five, as compared to three earlier) are no more than one
cell distance away from E, even though some are in the
other bit plane.

3.2 Dynamic behaviour of characteristic matrix
The characteristic matrix T mainly contains two sets of
functional information: (i) the neighbourhood depend-
ence function, and (ii) the state transition function.

IEE PROCEEDINGS-E, Vol . 139, No . 6 , NOVEMBER 1992

These functions are constant for a particular CA. So a
CA can be characterised by a unique characteristic
matrix T . Now, if one of the above two functions changes
with time then the characteristic matrix will also change
dynamically. By changing the neighbourhood relation of
one or more cells the T matrix can be modified easily. A
CA is said to have dynamic behaviour if it can be config-
ured to have different T matrices at different instants of
time.

3.2.1 Group properties of dynamic CA: If a CA under
the transformation of the operation with T forms a cycle
of length n, then

[f1+.(x)l = CTI"Cf,(x)l = C f t (X) l

That is,

[TI" = 1

or,
det [TI = 1.

A CA with such a property is called a group CA. Some
results related to group CA have been proved in Refer-
ence 6 which are stated below without any proof.

(a) A CA is a group CA if det [TI = 1 .
(b) A group CA has cycle lengths of p (or factors of p)

with a nonzero starting state if and only if
det [T P + 13 = 0.
We now consider a CA whose characteristic matrix T
changes dynamically with time. Suppose that the CA
alternately uses rule given by a characteristic matrix TI
for some cycles of time, and that by matrix T2 for other
cycles of time. If both TI and T2 obey the characteristics
of group CA, then we can write,

T ; = I and T ' ; = I

for some m and n

Dejinition 4 : If T, and denote the characteristic
matrices of a CA having dynamic behaviour, then the
'composite matrix' is defined as T y = TfTT, where x and
y are some integers.

Lemma I : If n and m, respectively, denote the lengths of
two group CAS whose characteristic matrices are TI and
T2, then their composition T:; will also constitute a
group CA, provided either (i) a = n, b = 1, or (ii) a = 1,
b = m.

Proof: Consider the case a = n and b = 1. From the
group properties of CA, it follows that

T; = I and T ' ; = I

I f f (x) denote the present state of the CA, then

T ; f (x) = f (x)

T ' ; T ; f (x) = f (x)

or

or

TT- 1 (T 2 (T ; f (x))) = f b)
or

T';- ' (T T A T f (x 1)) = f (x)

TZ T ; TZ T ; f (x) = f (x)

or
T m - 2

2

47 I

or

(TzT;)(TzT;) . . . t o m terms = f (x)

So the CA under the operation of dynamic T forms a
cycle of length (n + I)m, i.e. it constitutes a group CA of
length (n + 1)m. Now all the subcycles of length (n + 1)
can be made distinct if we choose Tz in such a way that
the in + 1)th state of each subcycle are distinct from the
previous n states. Similarly, the proof for the condition
a = 1, h = m can be arrived at. Q.E.D.

4

As discussed in Section 1, we shall restrict our attention
to the detection of PSFs in RAM. Two commonly used
restricted PSFs, shown in Fig. 5, are:

Type I : 5-cell neighbourhood, i.e. every cell depends on
itself and its four neighbours (top, bottom, left and right).

Detection of PSFs in R A M

0

a

G

b

Fig. 5 Neighbourhood dependencies
a Type I 5-neighbourhood, E-base cell, (A B C D) - neighbourhood
h Type 2.9-neighbaurhood, E-base cell, (A B C D F G H I) ~ neighbourhood

Type 2: 9-cell neighbourhood, i.e. every cell depends on
itself and its eight neighbours (top, bottom, left, right and
the four diagonals).

In the present work we concentrate on the Type 1 cate-
gory of faults.

There are two classes of PSFs caused by transition
write operations affecting the base cell of a given neigh-
bourhood. These are:

0 Active neighbourhood P S F (A N P S F) : The base cell
changes with a transition write in one of its neighbours
when the other neighbours contain a certain pattern of 0
and I .

0 Passive neighbourhood PSF (P N P S F) : The contents
of a cell cannot be changed from 0 to 1 (or 1 to 0) when a
certain pattern exists in the neighbouring cells.

Two steps have to be executed to test the base cells for
ANPSFs and PNPSFs:

Step 1 : Sensitise every fault using the appropriate
neighbourhood pattern.

Step 2: Read the state of the base cell after each sensi-
tising pattern to detect any fault.

The number of patterns needed to sensitise all ANPSFs
of a neighbourhood of size k is (k - 1)2k because each
one of the (k - 1) neighbours of the base cell must exer-
cise both the I-to-0 and 0-to-I transitions, while the
other (k - 1) cells take all the possible binary values.
Table 1 gives the sequence of patterns needed to sensitise
all ANPSFs of size five. It can be observed that the test
patterns form a unit distance code where two successive
test vectors differ only in one bit position.

Many different procedures have been proposed [12,
131 for the efficient generation of the sensitising patterns.
In the next section we present a CA based structure to
generate the sensitising patterns in proper sequence.

412

Table 1 : Test vector sequence t o detect PSFs

0 0 0 0 0 0 0 0 1 0 1 0 1 0 1 0
0 0 0 1 0 1 0 0 1 0 1 1 1 1 1 0
0 0 1 1 1 1 0 0 1 0 0 1 0 1 1 0
0 1 1 1 1 1 0 1 1 1 0 1 0 1 1 1
1 1 1 1 1 1 1 1 0 1 0 1 0 1 0 1
1 1 1 0 1 0 1 1 0 1 0 0 0 0 0 1
1 1 0 0 0 0 1 1 0 1 1 0 1 0 0 1
1 0 0 0 0 0 1 0 0 0 1 0 1 0 0 0
0 0 0 0 0 0 0 0 1 0 1 0 1 0 1 0
0 0 1 0 1 0 0 0 1 0 0 0 0 0 1 0
0 1 1 0 1 0 0 1 1 1 0 0 0 0 1 1
1 1 1 0 1 0 1 1 0 1 0 0 0 0 0 1
1 1 1 1 1 1 1 1 0 1 0 1 0 1 0 1
1 1 0 1 0 1 1 1 0 1 1 1 1 1 0 1
1 0 0 1 0 1 1 0 0 0 1 1 1 1 0 0
0 0 0 1 0 1 0 0 1 0 1 1 1 1 1 0

5 Test pattern generation using dynamic CA

We now present a method to generate the code sequence
depicted in Table 1 using an 8-cell CA as shown in Fig.
6a. To make the neighbourhood localised, the cells are
arranged in a two dimensional plane as depicted in Fig.
6h. Additionally, to achieve dynamic behaviour
(discussed later) the two rows are driven by distinct clock
signals and d 2 .

In this arrangement, the top row follows rule 170 with
periodic boundary condition. Only one cell of the top
row contains a 1 at any particular instant. This row
basically contains the information regarding which bit
position is changed in two successive patterns being gen-
erated. In effect, the top row is simply a cyclic left shift
register.

The lower bit plane is driven by the outputs of the top
row cells. A particular cell in the bottom row changes
state when the corresponding neighbouring cell of the top
row contains 1. The rule followed by the bottom row can
be expressed algebraically as xo 0 x - ~ , with respect to
Fig. 6a.

Thus the Characteristic matrix of the 8-cell CA is given
by

It can be shown that T: = I , which implies that this CA
is a group CA of length 8.

We now consider another characteristic matrix T2 in
which cells of the bottom row do not depend on the cells
of the top row; they depend only on themselves. The cor-
responding characteristic matrix is

Tz =

IEE PROCEEDINGS-E, Vol. 139, No . 6 , N O V E M B E R 1992

It can be shown that T: = I , i.e. it is a group C A of
length 4.

Here, the CA is made to change dynamically with time
by changing its characteristic matrix. We choose the
composite characteristic matrix as TYT,, so that the C A

cycles of length 36 generated by the 8-cell C A are shown
in Table 2, where the test pattern (a , , a 2 , a,, a,) is
taken out from the bottom row of the CA. From the
table i t is clear that the process of enabling d 2 for 8
cycles and disabling it for one cycle can be achieved by

a

Fig. 6 An 8-cell CA
D I-D organisation to generale the test vectors
b 2-D organisation a f b with two clack signals

j:l
is run for 4 subcycles, where in each subcycle the charac-
teristic matrix is TI for 8 time steps and T2 for 1 time
step. So, according to Lemma I , the C A forms a group
CA of length (8 + 1)4 = 36. If two consecutive test
vectors are identical then one of them is a dummy vector
as it has no effect in testing. In that case, the similar test
vectors are treated as one, applied for two time steps.

In our method, one part T' or T2 is an identity matrix,
which operates on the bottom row only. Although, the
application of Tz changes the global state of the CA, the
bottom row do not change. It follows that the start of
each subcycle produces a dummy state vector. Therefore,
in the four subcycles there are four dummy state vectors.
So effectively, we get (36 - 4) = 32 test vectors.

As discussed above, the C A generates 32 patterns in a
single cycle. If the cycle is run with a new initial state
then another set of 32 test patterns can be generated. By
selecting suitable starting seed, the required 64 patterns
(indicated in Table 1) can be generated. The control
structure to achieve this is discussed next.

5.1 CA structure realising the dynamic behaviour
We now outline the design of a C A whose behaviour is
represented by the composite characteristic matrix T
given by T : T 2 . The top and bottom rows of the CA are
fed with distinct clock signals 4, and 42. However, the
clock signal feeding the lower row is gated, which makes
it possible to freeze the state of the lower row by dis-
abling the clock d 2 . Disabling 42 effectively changes the
characteristic matrix of the C A from T, to T 2 . The two

IEE PROCEEDINGS-E, Vol . 139, No. 6 , NOVEMBER I992

making x = 0 whenever the state of the top row is equal
to its initial load value. The hardware circuitry of Fig. 7a
is specifically meant to perform this control.

initial
loading I I

1

comparator

(=0 if match) bottom row

(72 e load

b

Fig. 7
il Realisation of dynamic T
h Loading of a new seed

Generurkin ofunir distance code

Moreover, for the loading of the next seed, we see from
the table that the end of the first cycle of length
(8 + 1)4 = 36 can be detected by observing the pattern
(a , , a,, a,, a,) = (0 1 0 0) at the end of a TI subcycle
of length 8. The circuit to generate this load signal is

473

Table 2: Test patterns generated by CA

Initial loading 0 0 0 1 0 0 0 0

a3 a2 a , a0 a3 a2 a , a, a3 a2 a,

0 0 0 1 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 1 0 0 1
0 0 1 0 0 0 0 1 0 0 1 0 1 1 1 1 0 0 1 0 0 0 1
0 1 0 0 0 0 1 1 0 1 0 0 1 1 0 1 0 1 0 0 0 0 0
1 0 0 0 0 1 1 1 1 0 0 0 1 0 0 1 1 0 0 0 0 0 0
0 0 0 1 1 1 1 1 0 0 0 1 0 0 0 1 0 0 0 1 1 0 0
0 0 1 0 1 1 1 0 0 0 1 0 0 0 0 0 0 0 1 0 1 0 0
0 1 0 0 1 1 0 0 0 1 0 0 0 0 0 0 0 1 0 0 1 0 1
1 0 0 0 1 0 0 0 1 0 0 0 0 1 0 0 1 0 0 0 1 1 1
0 0 0 1 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 1 0 1 1
0 0 1 0 0 0 0 0 0 0 1 0 1 1 0 1 0 0 1 0 0 1 1
0 1 0 0 0 0 1 0 0 1 0 0 1 1 1 1 0 1 0 0 0 1 0
1 0 0 0 0 1 1 0 1 0 0 0 1 0 1 1 1 0 0 0 0 0 0

Initial loading 0 0 0 1 1 0 1 0

a3 a2 a , a, a3 a2 a , a0 a3 a2 a ,

0 0 0 1 1 0 1 0 0 0 0 1 0 1 0 0 0 0 0 1 1 0 0
0 0 1 0 1 0 1 1 0 0 1 0 0 1 0 1 0 0 1 0 1 0 0
0 1 0 0 1 0 0 1 0 1 0 0 0 1 1 1 0 1 0 0 1 0 1
1 0 0 0 1 1 0 1 1 0 0 0 0 0 1 1 1 0 0 0 1 0 1
0 0 0 1 0 1 0 1 0 0 0 1 1 0 1 1 0 0 0 1 0 0 1
0 0 1 0 0 1 0 0 0 0 1 0 1 0 1 0 0 0 1 0 0 0 1
0 1 0 0 0 1 1 0 0 1 0 0 1 0 1 0 0 1 0 0 0 0 0
1 0 0 0 0 0 1 0 1 0 0 0 1 1 1 0 1 0 0 0 0 1 0
0 0 0 1 1 0 1 0 0 0 0 1 0 1 1 0 0 0 0 1 1 1 0
0 0 1 0 1 0 1 0 0 0 1 0 0 1 1 1 0 0 1 0 1 1 0
0 1 0 0 1 0 0 0 0 1 0 0 0 1 0 1 0 1 0 0 1 1 1
1 0 0 0 1 1 0 0 1 0 0 0 0 0 0 1 1 0 0 0 1 0 1

shown in Fig. 7b. It may be noted that the load signal will
be active only at the end of the cycle of length 36.

6 Application of test patterns

There exists a number of tiling strategies for a 5-
neighbourhood memory array. Our main aim is to
choose a particular strategy such that greater parallelism
is possible at the time of test application. One such tiling
of an (8 x 8) memory array is shown in Fig. 8. E is the
base cell and A, E , C, D are its four neighbours. Many
base cells with identical neighbourhood can be accessed
simultaneously so that the test application time gets
reduced drastically.

Fig. 8 A filing strategy

6.1 Parallel testing strategy
There is ample scope for parallelism in memory testing
since by modifying the row and column decoders, a
number of rows and columns can be selected at the same
time. Accordingly, disjoint neighbourhood patterns may
be applied and observed concurrently. A method of par-
titioning the memory array into a number of blocks and
then testing each memory block parallely is considered
here.

From simulation results it has been found Reference
12 that when more than one cell is selected by accessing

multiple columns on a single row, the memory operates
correctly, i.e. the multiple cell access is similar to single
cell access. However, if multiple rows are accessed the
speed of write operation is degraded too much. For read
operation the situation is complex; if all the accessed cells
contain the same value then the read is correct, but if
they differ, the contents of some of the cells change [12].

One solution to the problem of write time degradation
is to use a larger driver with higher current driving capa-
bility, so that it may be able to drive many cells at a time.
However, as the driver size is increased, it consumes
more power and space. Also, this will add additional
delay in normal mode.

6.1.1 Solution to the problem of multiple row selec-
tion: To circumvent this problem we introduce an altern-
ative method 131 to increase the driving capability. We
assume that the total memory array (Jn x Jn) is parti-
tioned into nip number of (pJn) memory array blocks,
where p is the number of rows in a block. Row i
(1 < i < p) of each block can be accessed simultaneously
in the test mode. Here, we assume a four partitioned
memory array, i.e. nip = 4. As stated earlier, our tiling
strategy is such that every fourth column is identical.
Hence the number of columns are partitioned into
groups of four (Fig. 9).

The decoder circuit of Fig. 9 selects alternate fourth
columns and the transistor circuits enclosed within the
dotted box is used one per group. The bit lines of the
memory array are connected to the senseidrive amplifiers
through transistor switches T1, T2, T3, T4. The pass
transistors PI, P2, P 3 are inserted to facilitate mutual
current sharing. In the test mode the pass transistors are
turned on. That is, in test mode when any one of the four
bit lines are selected, the other three drivers which are
quiescent normally, now boosts the current through the
selected bit line. In normal mode the select line is 0, i.e.
the pass transistors are off and simply one out of four
column is selected by the modified decoder.

414 IEE PROCEEDINGS-E, Vol. 139, N o . 6 , N O V E M B E R 1992

6.1.2 Reduction of memory write operations: The test
set which we are using to test for PSFs in memory have
the unique property that successive test vectors differ
only in one bit position. Therefore, if we can detect the

exists for Cs and Ds. Now, if A and B differ (or C and D
differ) then it takes 2p steps to write all As and Bs (or Cs
and Ds). Table 3 shows the number of write operations
required in our scheme. The last column of the table
denotes the number of operations that would be neces-
sary otherwise. p denotes the number of rows in a parti-
tion.

Table 3 : Number of write ooerations

Pattern Number of bit writes

A B C D As perthe proposed scheme Normal

0 0 0 0 P 2P
0 0 0 1 3PP 2P
0 0 1 1 P 2P
0 0 1 0 3PI2 2P
0 1 1 0 2P 2P
0 1 1 1 *I2 2P
0 1 0 1 2P 2P
0 1 0 0 3PI2 2P

a1 bl c1 d l a2 b2 C2d2 0 3 b3 c3 d3

modified decoder circuit

Fig. 9 Parallel memory tesing scheme

bit which changes state between successive test vectors, it
is sufficient to write only the changed bit. The inherent
assumption is that the memory is static and retains its
stored information until modified further. To detect the
changing bits, we can use the circuit as shown in Fig. 10,
which compares the present test pattern with the pre-
vious one and detects the bit which has changed.

c'Tk
changed bit
pattern

pattern latch

Fig. 10 Detection of (he changed bit

As an example, let us consider a set of test patterns S,,
S, , . . . , S , that are to be applied in sequence. Assume
SI = (0 0 0 0) and S, = (0 0 0 1). Referring to Fig. 8, the
test set is applied to the cells (A B C D), the neighbours
of the base cell E . During application of the second
pattern S, , the comparator-decoder circuit compares S ,
and S , and decodes that bit which has changed, namely
the bit corresponding to cell D. So to apply the second
test pattern S, , we write only the cell marked D instead
of the four bits (A B C D) . Obviously for m number of
test patterns, the total number of writes is m instead of
4m. So, in case of ANPSF, the total number of writes
decreases from (4 x 256) to 256, and for PNPSF from
(4 x 64) to 64.

For dynamic R A M , all the four bits (A B C D) of every
test set has to be written into the neighbourhood cells
during testing. It is evident from Fig. 8 that our tiling is
such that the test bits A and B are in the same row, while
C and D are in same other row.

From the previous discussion it is evident that multi-
ple cells in the same row (i.e. multiple columns) can be
accessed without any problem. So, in a test pattern if A
and B are equal, then only p steps are required instead of
2p steps to write up all the As and Bs. A similar case

IEE PROCEEDINGS-E, Vol . 139, No . 6 , NOVEMBER 1992

Hence for dynamic RAM two 2-bit comparators are
used to compare A and E, and C and D. If the compara-
tor checks that A = B (or C = D) then the alternate
columns are selected in a single row and are written in
two steps rather than four steps as discussed in the above
table. If (A # E) or (C # D) then they have to be written
separately.

Using the comparator circuit for ANPSF the write
time decreases from (256 x 2 p) to (96 x 2p), and for
PNPSF it decreases from (64 x 2p) to (24 x 2p).

6 2 The testing algorithms
Algorithm I : Test for ANPSF

Step I : Write 0 into all base cells.
Step 2 : Repeat 64 times

cells.

Step 3 : Write 1 into base cells.
Step 4 : Repeat step 2.
Step 5 : Interchange the role of base cells and A B C D

(a) Write the current generated pattern into the

(b) Read in parallel all the base cells.

cells and repeat steps 1, 2, 3 , 4 .

Time complexity for Algorithm I :
(i) Writing all base cell - 4p.

(ii) Writing all 128 test patterns - 130p.
(iii) Read all base cells - 256p.

Algorithm 2: Test for PNPSF
Step I : Write 0 into all base cells.
Step 2: Repeat 16 times

(a) Write current test pattern in the neighbourhood.
(b) Read all base cells in parallel.

Step 3 : Write 1 into all base cells.
Step 4 : Repeat step 2.
Step 5 : Interchange the role of base cells and the

neighbourhood and repeat steps 1, 2, 3 , 4 .

Time complexity for Algorithm 2 :
(i) Writing all base cells ~ 4p.

(ii) Writing all 32 test paterns - 34p.
(iii) Reading all base cells - 64p.

7 Conclusion

A new strategy for parallel testing of RAM using a CA
based test generation scheme has been reported. The
advantage of the scheme is that it requires very simple

475

hardware to generate the test. patterns, and can be
extended to PSFs of any neighbourhood size. Thus, if we
want to generate n-bit code words with the same pro-
perty as discussed, then 2n number of CA cells are
required (organized in 2 x n array). The number of code
sequences to be generated is n x 2”. In that case, one
loading produces (n x 2n) or 2nZ number of test vectors.
So the number of loadings required is [q
For instance, test patterns for 9-neighbourhood PSFs
(n = 9) can be generated by a 16-bit CA with a similar
structure as discussed.

Several works have been reported [l , 5, 61 in the
application of CA for a variety of test generation prob-
lems. Specifically, CA structures have been proposed
which are capable of generating pseudo-random, pseudo-
exhaustive, deterministic test patterns etc. The guiding
motivation for the present work is to employ the same
CA structure with dynamic T operator so that it can
provide the BIST structure for memory testing. Work is
being carried on to extend the capabilities of the dynamic
CA to test the other memory subsystems and other types
of memory array faults.

8 References

I CHOWDHURY, D.R., DAS, A.K., MISRA, S., and CHAUDHURI,
P.P.: ‘Cellular automata ~ theory and applications’, JIETE, 1990,
36, (3/4), pp. 251-259

2 BREUER, M.A., and FRIEDMAN, A.D.: ‘Diagnosis and reliable
design of digital systems’ (Computer Science Press, Potomac, MD,
1976)

3 CHOWDHURY, D.R., and CHAUDHURI, P.P.: ‘Parallel memory
testing: a bist approach’, in Proceedings of the 3rd International
Workshop on VLSI Design, Bangalore, India, 1989, pp. 373-377

4 CODD, E.F.: ‘Cellular automata’ (Academic Press, New York,
1968)

5 DAS, A.K., and CHAUDHURI, P.P.: ‘An efficient on-chip deter-
ministic test pattern generation scheme’, Euromicro J., 1989, 26, pp.
195-204

6 DAS, A.K., and CHAUDHURI, P.P.: ‘Efficient characterization of
cellular automata’, Proc. IEE E, January 1990, 137, (I), pp. 81-87

7 SERRA, M., et al.: ‘The analysis of one dimensional linear cellular
automata and the aliasing properties’, IEEE Trons., Compur.-Aided
Des., July 1990, 9, (7). pp. 767-777

8 HAYES, J.P.: ‘Detection of pattern-sensitive faults in random access
memories’, IEEE Trans. Comput., February 1975, 24, (2), pp. 150-
157

9 HAYES, J.P.: ‘Testing memories for single-cell pattern-sensitive
faults’, IEEE Trans. Comput., March 1980, 29, (3). pp. 249-254

10 HORTENSIUS, P.D.: ’Parallel computation of non-deterministic
algorithms in vlsi’. PhD Dissertation (Universitv of Manitoba. Win-
n&g, Canada, 1987)

11 KNAIZUK, J. Jr., and HARTMANN, C.R.P.: ‘An optimal algo-
rithm for testine stuck-at faults in random-access memories’. IEEE
Trans. Comput., January 1981.30, (I), pp. 1-17

I2 LE, K.T., and SALUJA, K.K.: ‘A novel approach for testing
memory using bist techniques’ in Proceedings of the International
Test Conference, 1986, pp. 830-838

13 MAZUMDER, P., and PATEL, 1.K.: ‘Parallel testing for pattern-
sensitive faults in semiconductor RAMS’, IEEE Trans.
Comput.,March 1989,38, (3), pp. 394-407

14 NAIR, R.: ‘Comments on an optimal algorithm for testing stuck-at
faults in random access memories’, IEEE Trans. Comput., March
1979,28, (3). pp. 258-261

15 HORTENSIUS, P.D., McLEOD, R.D., PRIES, W., MILLER,
D.M., and CARD, H.C.: ‘Cellular automata based pseudo-random
number generators for built-in self-test’, IEEE Trans. Comput.-Aided
Des., August 1989, 8, (X), pp. 842-859

16 HORTENSIUS, P.D., McLEOD, R.D., and CARD, H.C.: ‘Cellular
automata circuits for built-in self test’, IBM J . Res. & Den, March/
May 1990, 34, (2/3)

17 McLEOD, R.D., HORTENSIUS, P.D., and CARD, H.C.: ‘Parallel
pseudo-random number generation for vlsi systems using cellular
automata’, IEEE Trans. Comput., October 1989, 38, (lo), pp. 1466-
1473

18 McLEOD, R.D., HORTENSIUS, P.D., and CARD, H.C.: ‘Cellular
automata based signature analysis for built-in self-test’, IEEE Trans.
Comput., October 1990.39, (lo), pp. 1273-1283

19 McLEOD, R.D., HORTENSIUS, P.D., CARD, H.C., and PRIES,
W.. ‘Importance sampling for using computers using one-
dimensional cellular automata’, IEEE Trans. Comput., June 1989,
38, (6), pp. 769-774

20 SCHNEIDER, R., McLEOD, R.D., HORTENSIUS, P., and
CARD, H.C.: ‘Calbo - cellular automata logic block observation’
in Canadian Conference on VLSI, November 1986

21 THATTE, S.M., NAIR, R., and ABRAHAM, J.: ‘Efficient algo-
rithms for testing semiconductor random-access memories’, IEEE
Trans. Comput., June 1978,27, (6). pp. 572-576

22 MISRA, S., and CHAUDHURI, P.P.: ‘Characterisation of additive
cellular automata and its application for deterministic test pattern
generation’ in Prwedings on VLSI India, 1989

23 SUK, D.S., and REDDY, S.M.: ‘Test procedures for a class of
pattern-sensitive faults in semiconductor random-access memories’,
IEEE Trans. Comput., June 1980,29, (6), pp. 419-429

24 SUK, D.S., and REDDY, S.M.: ‘A march test for functional faults in
semiconductor random access memories’, IEEE Trans. Comput.,
December 1981,30, (IZ), pp. 982-985

25 THANAILAKIS, A., PRIES, W., and CARD, H.C.: ‘Group proper-
ties of cellular automata and vlsi applications’. IEEE Trans.
Comput., December 1986,35, (12)

26 WOLFRAM, S.: ‘Statistical mechanics of cellular automata’, Reo.
Mod. Phys., July 1983, 55, (3), pp. 601-644

416 IEE PROCEEDINGS-E, Vol. 139, No. 6 , NOVEMBER 1992

