<u>nonlinearcircuits</u>

FRISSON build & BOM

This is a chaos module based on the Mackey-Glass equations which were developed to show the delay in physiological systems when producing or reducing certain cells in response to variations in concentration of those cells. The result is a very complex and easily controllable chaotic pattern.

The basic Mackey-Glass system implemented into electronics is a nonlinear stage, a low pass stage and a delay stage connected in a loop.

In this circuit the delay stage is made of 8 Bessel filters, configured for sub-audio rates, which are voltage controlled via LDRs, this section is very similar to an 8 stage phase shifter. Each filter stage has an output to the front panel. There is also an external input to inject signals into the chaos which is rather interesting.

Controlling the Delay section with CV, or via the knob, sets the frequency of the chaos. The chaos knob changes the pattern. The module self-oscillates, so can run happily with no inputs. It may pause for a while if the Chaos knob is turned to maximum, but runs at other settings. When CV or other signals are injected it runs at all settings.

If the switch is flicked to CV Phaser, then the Bessel filter section can be used, along with the feedback pot, as a voltage controlled CV Phaser, with 8 differing outputs of slightly delayed and increasingly slewed versions on the original CV can be obtained.

The feedback pot only works in CV Phase mode, it is switched out of the circuit in Chaos mode.

The module can be built to operate at different frequency ranges, capacitor values are given in the Build Notes. I prefer the slowest version, but feel free to go your own way, or build all 3. You can try other values if you want to. Generally C2 should be approx. double the value of C1 and C3/4 (these are in parallel so add together) should be 10-20x greater than C2

There are a couple of resistors to mod if you feel like it. 7k5* sets the gain of the nonlinear stage. If you use a smaller value, say 3k3 to 4k7, the chaos is quite beautiful but much smaller amplitude, around 1-2V p-p. This would be nice for use in video synths. Also, with a low value for 7k5*, the chaos gets swamped by any incoming CV, if the input knob it turned up high.

The 10k* sets the resistance for the input signal, probably best to leave as is.

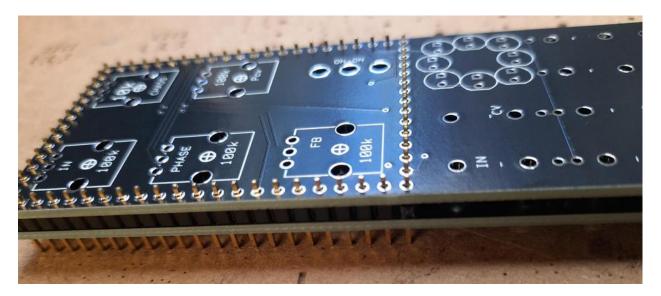
The 47k near the bottom of the PCB sets the gain for the LDR driver LED. If you find a lot of dead zone when turning the Phase knob, reduce this to maybe 33k, or increase RLvactrol.

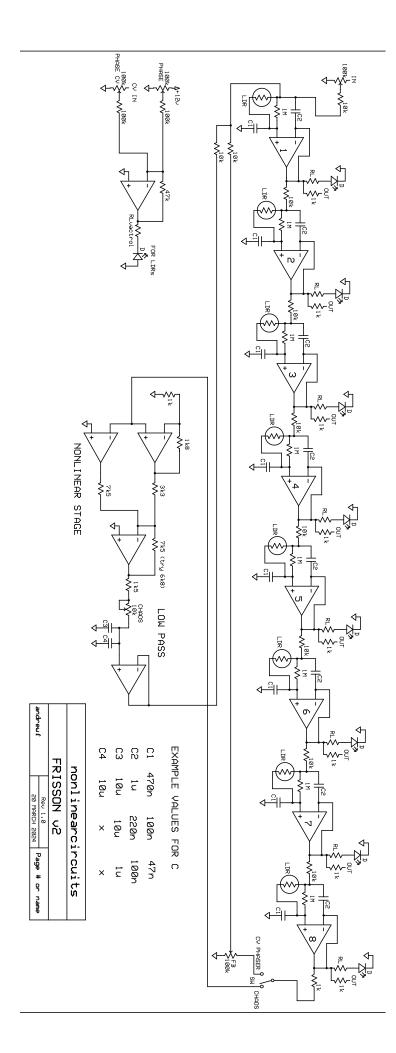
synthCube will carry full and partial kits as well

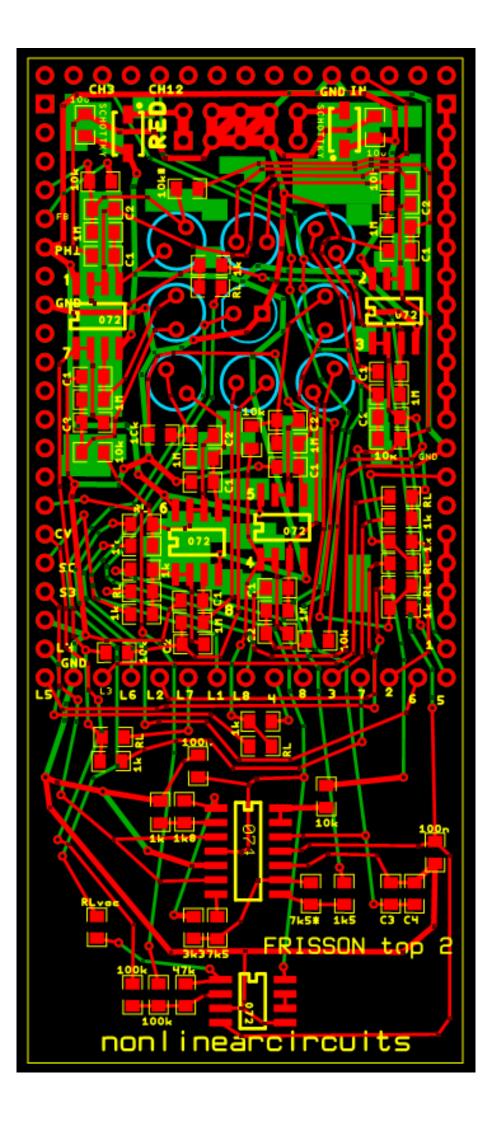
VALUE	QUANTITY	DETAILS		
100nF	2	0805 Tayda: A-3511		
10uF	2	0805 25V or higher voltage rating		
		Mouser:963-TMKŽ12BBJ106MG-T or		
		similar		
C1	8	0805 see chart below		
C2	8	0805 see chart below		
C3	1	0805 see chart below		
C4	1	0805 see chart below		
1k	10	0805		
1k5	1	0805		
1k8		0805		
3k3		0805		
7k5	2	0805		
10k	10	0805		
47k	1	0805		
100k	2	0805		
1M	8	0805		
RL	8	0805 select resistor to suit LED		
		brightness, probably 2k2 for bipolar		
		LEDS		
RLvac	1	0805 select resistor to suit LED		
		driving the LED in the black box, try		
		2k2 to 4k7 for diffused red LED		
TL072 / TL082	5	Tayda: A-1139		
TL074 / TL084 / LF347	1	soic Tayda: A-1140		
LDR	8	GL5516 or whatever		
3mm bipolar LEDs	8	Tayda: A-1076 or get diffused		
•		red/blue off ebay or Aliexpress		
3mm LED	1	diffused red, yellow or green for		
		driving LDRs (not blue)		
Eurorack 10 pin power	1	Tayda: A-198 cut to size		
connector				
Schottky diodes	2	I use MBR0540 in a sod-123 package.		
-		Any with 30V+ and 0.25A+ ratings will		
		do. dot on PCB indicates CATHODE		
		(stripe on component).		
PJ-3001F 3.5mm Mono	10	Tayda: A-2563 or Thonkiconn Jacks		
Phone Jack		(PJ301M-12) from Thonk, Synthcube or		
		Modular Addict		
10k pot	1	Tayda: A-4728		
100k pots	4	Tayda: A-4729		
on-on toggle switch	1	tayda: A-5389		
20 Pin 2.54mm Single	2	Tayda: A-1310		
Row Female Pin Header		-		
15 Pin 2.54mm Single	2	Tayda: A-1669		
Row Female Pin Header	_	Tuyua. A 1005		
40 Pin 2.54mm Single	2	Tayda: A-197 snap into 15 and 20 pin		
Row Pin Header Strip	~	sections, get spares		
Now Fill Header Still		sections, yet spares		

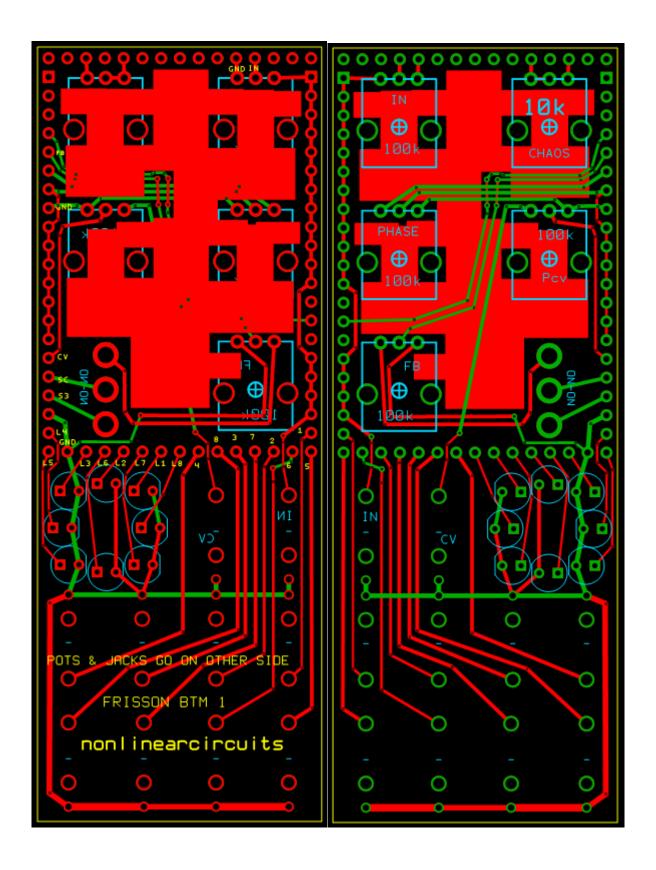
C1-C4 selection chart

If not sure, go for Slow


	slow	Medium	Fast
C1	470n	100n	47n
C2	1u	220n	100n
C3	10u	10u	1u
C4	10u	nothing	nothing


Additional notes:


<u>1.</u> The chips, resistors, caps are cheapest from Tayda. Schottky diodes, CMOS & 1uF, 10uF 25V 0805 caps from Mouser/E14/Farnell/etc.


2. Join the Nonlinearcircuits Builders Guild on FB: https://www.facebook.com/groups/174583056349286/ and ask questions there if you have any. If you prefer not to FB then email is fine.

3. Build tip – before soldering the upper PCB, install the pin header strips in the bottom PCB and solder them in. Use the top PCB to hold them in place when soldering, so the pin headers are straight with minimal gaps for light leakage. Use a spare thumb to press the PCB down when soldering the 1st pins on each side, to keep it nice and tight.

